Physico-Chemical nanomaterials science On combine-layered nanoclustering in As-enriched sulfides

O. Shpotyuk¹⁻³

Scientific Research Company "Carat"
 Stryjska str., Lviv, 79031, Ukraine
 E-mail: olehshpotyuk@yahoo.com
 Jan Dlugosz University in Czestochowa
 Armii Krajowej str., 42200, Czestochowa, Poland
 Vlokh Institute of Physical Optics
 Dragomanov str., 79005 Lviv, Ukraine

Ab initio quantum-chemical modeling within CINCA (cation-interlinking network cluster approach) algorithm is employed to examine structure-forming tendencies in As-enriched binary As-S compounds. The As₄S_n nanoclusters with n=0,1,2,3,4 corresponding to average coordination numbers Z=3.00-2.50 (i.e. the number of bonds per atom of structure-forming unit) are selected to reflect expected network-, molecular- and combine-layered trends. Following fundamental finding of Bonazzi et al. [1] on origin of mineral duranusite As₄S possessing an orthorhombic structure composed of two layers (As₂ and As₂S), the formation energies are extrapolated for As₄S₂, As₄S₃ and As₄S₄ nanoclusters. In respect to the calculations performed, *the molecular-forming tendency* is shown to be better for As₄S₃ and As₄S₄ compositions (with respective mineral dimorphite and realgar), while As₄S₂, As₄S and As₄ compounds were dominated with an obvious *combine-layered tendency* resulting in energetically-favorable structure represented by mineral duranusite As₄S and orthorhombic As [2]. This result contradicts entirely to Kyono [3], who hypothesized molecular structure for duranusite As₄S.

From this viewpoint, it is predicted the existence of orthorhombic counterpart of As_4S_2 sulfide with Z=2.67, the traces of these orthorhombic crystallites being probably expected among known arsenic sulfides minerals.

- **1.** *Bonazzi P., Lepore O., Bindi L.,* Molecular *versus* layered structure in arsenic sulphide minerals: the case of duranusite, As₄S // Eur J Mineral.-**28.**-P. 147-151.
- **2.** *Smith P.M., Leadbetter A.J., Apling A.J.* The structure of orthorhombic and vitreous arsenic // Phil Mag.-1975.**-31**.-P. 57-64.
- **3.** *Kyono A.*, Ab initio quantum chemical investigation of arsenic sulfide molecular diversity from As_4S_6 and As_4 // Phys Chem Mineral.-2013.-**40**.-P.717-731.